Warning: Use of undefined constant Symbol - assumed 'Symbol' (this will throw an Error in a future version of PHP) in /mnt/new-ebs/workbench-106550/lib/dojo/util/docscripts/lib/parser2/dojo2.inc on line 215 Warning: Use of undefined constant JavaScriptSymbol - assumed 'JavaScriptSymbol' (this will throw an Error in a future version of PHP) in /mnt/new-ebs/workbench-106550/lib/dojo/util/docscripts/lib/parser2/dojo2.inc on line 215

dojox/gfx3d/scheduler.js

  • Provides:

    • dojox.gfx3d.drawer
  • Requires:

    • dojox.gfx3d.vector in common
  • dojox.gfx3d.scheduler.zOrder

    • parameters:
      • buffer
      • order
    • type
      Function
  • dojox.gfx3d.scheduler.bsp

    • parameters:
      • buffer
      • outline
    • type
      Function
  • dojox.gfx3d.scheduler.order

    • parameters:
      • it
    • type
      Function
  • dojox.gfx3d.scheduler.outline

    • parameters:
      • it
    • type
      Function
  • dojox.gfx3d.drawer.conservative

    • parameters:
      • todos
      • objects
      • viewport
    • type
      Function
  • dojox.gfx3d.drawer.chart

    • parameters:
      • todos
      • objects
      • viewport
    • type
      Function
  • dojox.gfx3d.scheduler.BinarySearchTree

    • type
      Function
    • parameters:
      • obj: (typeof object:)
        dojox.gfx3d.Object
      • outline
    • summary
      build the binary search tree, using binary space partition algorithm.
      The idea is for any polygon, for example, (a, b, c), the space is divided by
      the plane into two space: plus and minus.
      
      for any arbitary vertex p, if(p - a) dotProduct n = 0, p is inside the plane,
      > 0, p is in the plus space, vice versa for minus space.
      n is the normal vector that is perpendicular the plate, defined as:
      n = ( b - a) crossProduct ( c - a )
      
      in this implementation, n is declared as normal, ,a is declared as orient.
  • dojox.gfx3d.scheduler.BinarySearchTree.constructor

    • constructor - constructor
    • type
      Function
    • parameters:
      • obj: (typeof object:)
        dojox.gfx3d.Object
      • outline
    • summary
      build the binary search tree, using binary space partition algorithm.
      The idea is for any polygon, for example, (a, b, c), the space is divided by
      the plane into two space: plus and minus.
      
      for any arbitary vertex p, if(p - a) dotProduct n = 0, p is inside the plane,
      > 0, p is in the plus space, vice versa for minus space.
      n is the normal vector that is perpendicular the plate, defined as:
      n = ( b - a) crossProduct ( c - a )
      
      in this implementation, n is declared as normal, ,a is declared as orient.
  • dojox.gfx3d.scheduler.BinarySearchTree.add

    • parameters:
      • obj
      • outline
    • type
      Function
  • dojox.gfx3d.scheduler.BinarySearchTree.normal

    • type
      Object
  • dojox.gfx3d.scheduler.BinarySearchTree.orient

  • dojox.gfx3d.scheduler.BinarySearchTree.minus

    • type
      Object
  • dojox.gfx3d.scheduler.BinarySearchTree.plus

    • type
      Object
  • dojox.gfx3d.scheduler.BinarySearchTree.iterate

    • parameters:
      • outline
    • type
      Function
  • dojox.gfx3d.scheduler.BinarySearchTree.object

  • dojox.gfx3d.drawer

    • type
      Object
  • dojox.gfx3d

    • type
      Object
  • dojox

    • type
      Object